Abstract

Initial-boundary value problems for one-dimensional ‘completely integrable’ equations can be solved via an extension of the inverse scattering method, which is due to Fokas and his collaborators. A crucial feature of this method is that it requires the values of more boundary data than given for a well-posed problem. In the case of cubic NLS, knowledge of the Dirichet data suffices to make the problem well-posed but the Fokas method also requires knowledge of the values of Neumann data. The study of the Dirichlet to Neumann map is thus necessary before the application of the ‘Fokas transform’. In this paper, we provide a rigorous study of this map for a large class of decaying Dirichlet data. We show that the Neumann data are also sufficiently decaying and that, hence, the Fokas method can be applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.