Abstract

In this article, we consider the analogue of the Dirichlet problem for second-order elliptic integro-differential equations, which consists in imposing the in the whole complementary of the domain. We are looking for conditions on the differential and integral parts of the equation in order to ensure that the Dirichlet boundary condition is satisfied in the classical sense or, in other words, in order that the solution agrees with the Dirichlet data on the boundary of the domain. We also provide a general existence result of a continuous viscosity solution of the nonlocal Dirichlet problem by using Perron's method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.