Abstract
We consider the problem of solvability of an inhomogeneous Dirichlet problem for a scalar improperly elliptic differential equation with complex coefficients in a bounded domain. A model case where the unit disk is chosen as the domain and the equation does not contain lower terms is studied. We prove that the classes of Dirichlet data for which the problem has a unique solution in the Sobolev space are spaces of functions with exponentially decreasing Fourier coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.