Abstract

Let d(δ) denote the Hausdorff dimension of the Julia set of the polynomial fδ(z)=z2−2+δ.In this paper, we will study the directional derivative of the function δ↦d(δ) along directions landing at the parameter 0, which corresponds to −2 in the case of family pc(z)=z2+c. We will consider all directions except the one δ∈R+, which is inside the Mandelbrot set.We will prove an asymptotic formula for the directional derivative of d(δ). Moreover, we will see that the derivative is negative for all directions in the closed left half-plane. Computer calculations show that it is negative except for a cone (with an opening angle of approximately 74∘) around R+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.