Abstract

Two classes of Riccati equations arising in the boundary control of parabolic systems are studied by direct methods. The new feature with respect to previous works on this subject is the low regularity of the final data. The classes considered here generalize those of [7]and [5]on one side, and of [14]on the other one. Completely new methods are used to obtain the solution of the Riccati equations, in both cases. The central theme is the dependence of the solutions on a «symmetric» norm of the final data, yielding these new results as well as a new proof of existence for the related algebraic Riccati equation under more general assumptions. The synthesis of the associated linear-quadratic-regulator problems is easily solved using these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.