Abstract

Rotational-echo double resonance (REDOR) and Dipolar-coupling chemical-shift correlation (DIPSHIFT) are commonly used experiments to probe heteronuclear dipole-dipole couplings between isolated pairs of spin-12 nuclei in magic-angle-spinning (MAS) solid-state NMR. Their widespread use is due to their robustness to experimental imperfections and a straightforward interpretation of data. Both of these experiments use rotor-synchronised π pulses to recouple the heteronuclear dipole-dipole couplings, and the observed intensity of resonances is modulated by a recoupled phase factor depending on the position or duration of the recoupling pulses. Several modifications to both of these experiments have been proposed, for example, the development of DIPSHIFT which employs strategies that mimic the multi-rotor-period nature of REDOR. We show here that REDOR and DIPSHIFT are in fact alternate implementations of the same experiment. The overt similarity in the design of REDOR and DIPSHIFT is also reflected in their theoretical description. Dipolar dephasing curves in REDOR are obtained by increasing the recoupling duration whilst keeping the position of the pulses constant, which results in a dephasing factor that is a function of only the dephasing time. DIPSHIFT, on the other hand, is a constant-time version of REDOR; the dipolar dephasing is a function of the position of the pulses with respect to the rotor period. We discuss the advantages and disadvantages of each implementation and suggest domains of applicability for these sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call