Abstract

AbstractWe show that the product of four or five consecutive positive terms in arithmetic progression can never be a perfect power whenever the initial term is coprime to the common difference of the arithmetic progression. This is a generalization of the results of Euler and Obláth for the case of squares, and an extension of a theorem of Győry on three terms in arithmetic progressions. Several other results concerning the integral solutions of the equation of the title are also obtained. We extend results of Sander on the rational solutions of the equation in n, y when b = d = 1. We show that there are only finitely many solutions in n, d, b, y when k ≥ 3, l ≥ 2 are fixed and k + l > 6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.