Abstract

In this paper, we show that (n, x, y, z) = (2, 3, 0, 3) is the unique non-negative integer solution of the Diophantine equation n^x + 10^y = z^2 , where n is a positive integer with n ≡ 2 (mod 30) and x, y, z are non-negative integers. If n = 5, then the Diophantine equation has exactly one non-negative integer solution (x, y, z) = (3, 2, 15). We also give some conditions for non-existence of solutions of the Diophantine equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.