Abstract

The Goppa code distinguishing (GD) problem asks to distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one. We revisit a distinguisher for alternant and Goppa codes through a new approach, namely by studying the dimension of square codes. We provide here a rigorous upper bound for the dimension of the square of the dual of an alternant or Goppa code, while the previous approach only provided algebraic explanations based on heuristics. Moreover, for Goppa codes, our proof extends to the non-binary case as well, thus providing an algebraic explanation for the distinguisher which was missing up to now. All the upper bounds are tight and match experimental evidence. Our work also introduces new algebraic results about products of trace codes in general and of dual of alternant and Goppa codes in particular, clarifying their square code structure. This might be of interest for cryptanalysis purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.