Abstract

An account of mathematical understanding should account for the differences between theorems whose proofs are “easy” to discover, and those whose proofs are difficult to discover. Though Hilbert seems to have created proof theory with the idea that it would address this kind of “discovermental complexity”, much more attention has been paid to the lengths of proofs, a measure of the difficulty of verifying of a given formal object that it is a proof of a given formula in a given formal system. In this paper we will shift attention back to discovermental complexity, by addressing a “topological” measure of proof complexity recently highlighted by Alessandra Carbone (2009). Though we will contend that Carbone’s measure fails as a measure of discovermental complexity, it forefronts numerous important formal and epistemological issues that we will discuss, including the structure of proofs and the question of whether impure proofs are systematically simpler than pure proofs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.