Abstract
SynopsisLet y(n) + a1y(n−1 +…+ an−1y(1) + an = 0 (*) be a linear ordinary differential equation of order n. A (relative) differential invariant of (*) is a differential polynomial function π(xi) defined on the solution space of (*) satisfying: there is an integer g such that for all invertible linear transformations α of V into itself, π(αxi) = (det α)βπ(xi). We prove in a purely algebraic manner the following two theorems: A. The differential invariants of (*) are generated algebraically by the Wronskian W and the coefficients ala2, …, an of (*). B. Every generic differential relation (i.e. differential relation which holds for every linear ordinary differential equation of order n) among W, a1 …, an can be deduced algebraically from Abel's identity, W′ = −a1W. The second theorem may be considered as an algebraic version of the existence theorem for linear ordinary differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.