Abstract
In this paper, we analyze the space-time structures of the 10–25 day intraseasonal variability of rainfall over Central Africa (CA) using 1DD GPCP rainfall product for the period 1996–2009, with an emphasis on the comparison between the western Central Africa (WCA) and the eastern Central Africa (ECA) with different climate features. The results of Empirical Orthogonal Functions (EOFs) analysis have shown that the amount of variance explained by the leading EOFs is greater in ECA than WCA (40.6% and 48.1%, for WCA and ECA, resp.). For the two subregions, the power spectra of the principal components (PCs) peak around 15 days, indicating a biweekly signal. The lagged cross-correlations computed between WCA and ECA PCs time series showed that most of the WCA PCs lead ECA PCs time series with a time scale of 5–8 days. The variations of Intraseasonal Oscillations (ISO) activity are weak in WCA, when compared with ECA where the signal exhibits large annual and interannual variations. Globally, the correlation coefficients computed between ECA and WCA annual mean ISO power time series are weak, revealing that the processes driving the interannual modulation of ISO signal should be different in nature or magnitude in the two subregions.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have