Abstract

The potential of random metal-dielectric nanocomposites as constituent elements of metamaterial structures is explored. Classical effective medium theories indicate that these composites can provide a tunable negative dielectric function with small absorption losses. However, the tuning potential of real random composites is significantly lower than the one predicted by classical theories, due to the underestimation of the spectral range where topological resonances take place. This result suggests that a random mixture consisting of a metal matrix with embedded isolated dielectric inclusions is a promising design guideline for the fabrication of tunable composites for metamaterial purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call