Abstract
Let R be a Koszul algebra over a field k and M be a linear R-module. We study a graded subalgebra ΔM of the Ext-algebra ExtR⁎(M,M) called the diagonal subalgebra and its properties. Applications to the Hochschild cohomology ring of R and to periodicity of linear modules are given. Viewing R as a linear module over its enveloping algebra, we also show that ΔR is isomorphic to the graded center of the Koszul dual of R.When R is selfinjective and not necessarily graded, we study connections between periodic modules M, complexity of M and existence of non-nilpotent elements of positive degree in the Ext-algebra of M. Characterizations of periodic algebras are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.