Abstract
The goal of this review paper will be to address complex optimization functions in the area of overcurrent relay optimization, to inspect and valorize their objectives and to critically examine their application in real distribution networks. Special emphasis will be put on observing the optimization of discrimination time between primary and backup relay pairs, and methods which prevent the latter becoming penalty functions will be shown. Furthermore, the impact of distributed generation units on the overcurrent relay optimization problem will be elaborated in detail. Protection settings of all the existing and new relays must be thoroughly inspected before the connection of new production units, because contributing fault currents may have a significant effect on the solution of the overcurrent optimization problem. This is because the relays being used are of an inverse-type. Next, meshed network operation will be critically assessed in comparison with the actual practice of radial operation, and some topologies will be highlighted for future research, while others will be discarded. The distribution network in mesh operation implicitly suggests using numerical relays on both sides of protected elements (usually lines), so their total number will be much higher than in radial operation. Finally, a relatively new concept of adaptive distribution network protection will be reviewed, and its potential application to the overcurrent relay optimization problem will be examined. The purpose of this review paper will be to lay a groundwork for future research papers by inspecting the overall development of the overcurrent relay optimization problem for contemporary and future active distribution networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.