Abstract
We report on the development of a lattice model to predict structural, dynamical and capacitive properties of electrochemical double layer capacitors. The model uses input from molecular simulations, such as free energy profiles to describe the ion adsorption, and experiments, such as energy barriers for transitions between lattice sites. The model developed is approximately 10,000 times faster than common molecular simulations. We apply this model to a set of carbon structures with well-defined pore sizes and investigate the solvation effect by doing simulations with neat ionic liquids as well as acetonitrile-based electrolytes. We show that our model is able to predict quantities of adsorbed ions and capacitances in a range compatible with experimental values. We show that there is a strong dependency of the calculated properties on the pore size and on the presence or absence of solvent. In particular, for neat ionic liquids, larger capacitances are obtained for smaller pores, while the opposite trend is observed for organic electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.