Abstract

A high intensity dual beam X-ray system was designed and constructed to make chordal-average void fraction measurements. This X-ray system employed a DC excited tube filament, full wave rectification and high voltage filtering to produce a stable photon source. The large photon flux produced by the X-ray system allowed analog linearization of the signal. A series of chordal-average void fraction measurements were made and used to generate probability density functions (PDF) and power spectral density (PSD) functions. The first four moments associated with these distributions were studied as possible flow regime indicators. The moments of the PDF indicated the various flow regime transitions. The moments of the PSD also show some flow regime transition information, but were sensitive to liquid phase velocity. The PDF variance, or second moment about the mean, was found to be the best indicator of flow regime. A variance of 0.04 appear to adequately discriminate between the bubbly, slug and annular flow regimes for low pressure air/water flow in a 2.54 cm I.D. vertical tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.