Abstract

The development of an experimental platform for studying Vortex Machining is presented. This process uses oscillating probes to generate localized vortices in polishing slurry in a region near to a workpiece surface. These vortices create material removal footprints having lateral dimensions typically measuring tens of micrometers. From studies of the process variables and subsequent machining footprints a number of process controls have been implemented and are discussed herein. These include a localized metrology frame to control specimen to probe position, coarse-fine translation axes for submicrometer motion control, closed-loop control of probe oscillation, and a slurry height control system. To illustrate the fidelity of these additional controls, the evolution from early machining footprints to the recent production of footprint arrays are presented. While process stability issues remain, machining footprints of near Gaussian shape having dimensions of 10–20 μm diameter and 40 nm depth after machining for 30 min can be reproduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call