Abstract

Abstract The focus of this study is the development of a methodology to mechanically separate or fractionate micro-fibrillated fibre suspensions (MFC) into different size classes. We extend the principle outlined by Madani et al. (2010) and create a continuous separation in an annular gap undergoing spiral Poiseuille flow (solid body rotation superimposed on pressure driven flow). Achieving hydrodynamic stability of this flow was the main scientific challenge for scale-up. This work is presented in two different studies. In the first study, we perform a series of batch-wise centrifugation tests to develop the criteria for motion of the individual classes of particles which compose a Eucalyptus MFC suspension. Here, we suspend the MFC in a weak gel and demonstrate a linear reduction in average particle size with increasing centrifugal force; motion is initiated in heavier particles before the lighter ones. In the second study, we use this batch-wise data to design a continuous prototype and we successfully demonstrate a continuous separation with performance similar to that achieved in the batch-wise tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call