Abstract

AbstractMuch of the southeast United States experienced record dry conditions during September of 2019, with the area in abnormally dry to exceptional drought conditions growing from 25% at the beginning of the month to 80% by the end of the month. The drought ended just as abruptly due to above-normal rain that fell during the second half of October. In this study we employed MERRA-2 and the GEOS-5 AGCM to diagnose the underlying causes of the drought’s onset, maintenance, and demise. The basic approach involves performing a series of AGCM simulations in which the model is constrained to remain close to MERRA-2 over prespecified areas that are external to the drought region. The start of the drought appears to have been forced by anomalous heating in the central/western tropical Pacific that resulted in low-level anticyclonic flow and a tendency for descending motion over much of the Southeast. An anomalous ridge associated with a Rossby wave train (emanating from the Indian Ocean region) is found to be the main source of the most intense temperature and precipitation anomalies that develop over the Southeast during the last week of September. A second Rossby wave train (emanating from the same region) is responsible for the substantial rain that fell during the second half of October to end the drought. The links to the Indian Ocean dipole (with record positive values) as well as a waning El Niño allow some speculation as to the likelihood of similar events occurring in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.