Abstract

A method that allows one to decide whether or not the capacity region of a multiple-access arbitrarily varying channel (AVC) has a nonempty interior is discussed. Using the method of types and an approach different from J.H. Jahn (ibid. vol.27, no.3, p.212-226, 1981) this problem is partially solved. The notion of symmetrizability for the two-user AVC as an extension of the same notion for the single-user AVC is considered. It is shown that if a multiple-access AVC is symmetrizable, then its capacity region has an empty interior. For the two-user AVC, this means that at least one (and perhaps both) users cannot reliably transmit information across the channel. More importantly, it is shown that if the channel is suitably nonsymmetrizable, then the capacity region has a nonempty interior, and both users can reliably transmit information across the channel. The proofs rely heavily on a complicated decoding rule. Conditions under which simpler multiple-message decoding techniques might suffice are therefore examined. In particular, conditions under which the universal maximal mutual information decoding rule will be effective are given.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.