Abstract
Abstract This paper concerns the inverse problem of retrieving the principal coefficient in a Korteweg–de Vries (KdV) equation from boundary measurements of a single solution. The Lipschitz stability of this inverse problem is obtained using a new global Carleman estimate for the linearized KdV equation. The proof is based on the Bukhgeĭm–Klibanov method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.