Abstract

The paper presents a comparison of the dissipation rate obtained from numerical differentiation of the time-resolved velocity, analog differentiation of the hot-wire signal, integration of the velocity derivative spectra obtained from the velocity spectra, and the application of a power decay law. Hot-wire measurements downstream of an active-grid provide the time-resolved velocity with a Taylor Reynolds number in the range of 200–470, turbulence intensities in the range of 5.8–11%, and nominal mean velocities of 4, 6, and 8 m s^{-1}. The dissipation rate calculated using a ninth-order central-difference scheme differs at most by {pm } 4% from the value obtained by analog differentiation. For comparison, a 23rd-order central-difference scheme offers negligible (0.02%) difference relative to the ninth-order scheme. Correction for an apparent uncertainty in the calibration of the analog differentiator reduces the difference to {pm } 2.5%. In contrast, integration of the velocity derivative spectra obtained from the velocity spectra leads to a dissipation rate 14–45% larger than the corresponding values obtained using analog differentiation. Results obtained from the application of a power decay law of turbulence kinetic energy with a nonzero virtual origin to determine the dissipation rate deviate by 1.7%, 1.6%, and 3.6% relative to the corresponding values obtained from the analog differentiator based on the ensemble average of downstream locations with a {pm }5.6% scatter about the ensemble average.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.