Abstract
The i th section function of a star body in $ {\Bbb E}$ n gives the i -dimensional volumes of its sections by i -dimensional subspaces. It is shown that no star body is determined among all star bodies, up to reflection in the origin, by any of its i th section functions. Moreover, the set of star bodies that are determined among all star bodies, up to reflection in the origin, by their i th section functions for all i , is a nowhere dense set. The determination of convex bodies in this sense is also studied. The results complement and contrast with recent results on the determination of convex bodies by i th projection functions. The paper continues the development of the dual Brunn—Minkowski theory initiated by Lutwak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.