Abstract
A quaternary system consisting of three solutes, namely ethanol, diethylene glycol (DEG) and triethylene glycol (TEG) in benzene at 298.15 K and 1.0125 × 105 Pa was studied. An experimental design in the range of concentration 0.006 < xsolute−i < 0.023 was explored, optimizing the metric distance among the solutes to avoid clustering. On-line simultaneous experimental measurements using a densitometer and a refractometer were utilized to measure bulk solution density and bulk refractive index, respectively. Response surface models describing the total molar volume and total molar refraction were employed to determine the partial molar volumes and the partial molar refractions of each solute from the dilute multi-component data alone. Neither densities nor refractive indices of any of the pure components were used and no binary information was required for the analysis. Definitions for the mean electronic polarizability and the effective molecular radius of a solute based on the partial molar refraction were introduced. Subsequently, the mean electronic polarizabilities and the effective molecular radii for each solute in multi-component solutions, as well as the solvent were determined. The results obtained for the partial molar volumes, partial molar refractions, electronic polarizabilities and the effective molecular radii were in good agreement with those obtained from independent binary experiments as well as those from literature binary data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.