Abstract

The purpose of this paper is to illustrate the issues involved in designing the demodulator portion of a universal receiver for unknown or time-varying channels by means of a specific example. We consider the class of nonselective Rician fading channels with additive white Gaussian noise. The optimal receiver for a Rician channel depends on the parameters of the channel, and the collection of optimal receivers for channels in the class of interest forms an infinite receiver class. We find a finite number of receivers in this receiver class with the property that, regardless of the parameters of the channel in effect, at least one of these receivers provides a symbol error probability that is within a specified deviation from the optimal symbol error probability for the channel. These receivers are then used in parallel to perform a symbol-by-symbol demodulation of the received signal. The receiver output that gives the most reliable reproduction of the transmitted sequence is identified by means of a data verification mechanism. The resulting system is a universal receiver. Methods for data verification are developed in other papers. In this paper, we develop an algorithm for finding the required finite set of receivers. Typical issues, such as the tradeoff between the number of parallel receivers and the allowed deviation from optimality, are discussed. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.