Abstract

A comprehensive treatment of the limitations and possibilities for single-pulse selection in synchrotron operating modes with approximately 150 ns bunch separation, as occurs in the standard operating mode at the Advanced Photon Source, is presented. It is shown that the strength of available materials and allowable kinetic energy build-up limit single-bunch selection for this separation to sample sizes of approximately 100 microm, and that for minimization of kinetic energy build-up it is preferable to increase the r.p.m. within physically acceptable limits rather than increase the disc radius to obtain a desirable peripheral speed. A slight modification of the equal-bunch spacing standard fill patterns is proposed that allows use of samples as large as 500 microm. The corresponding peripheral speed of the chopper wheel is approximately 600 m s(-1), which is within the limits of high-strength titanium alloys. For smaller samples, peripheral speeds are proportionally lower. Versatility can be achieved with interchangeable chopper wheels and the use of different orientations of the rotation axis relative to the X-ray beam, which opens the possibility of larger, rather than one-of-a-kind, production runs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call