Abstract

The Cramer-Rao inequality is applied to the likelihood function of the synthetic aperture radar (SAR) scatterer parameter vector to relate the choice of flight path to estimation performance. Estimation error bounds for the scatterer parameter vector (including height) are developed for multi-dimensional synthetic apertures, and quantify the performance enhancement over a limited sector of the image plane relative to standard-aperture single-pass SAR missions. An efficient means for the design and analysis of SAR waveforms and flight paths is proposed using simulated scattering models that are limited in size. Comparison of the error bounds to those for standard-aperture SAR show that estimates of scatterer range and cross-range positions are accurate for multi-dimensional aperture SAR, even with the additional estimator for height. Furthermore, multi-dimensional SAR is shown to address the layover problem

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.