Abstract

This review of design principles for implementation of a spiral inductor in a silicon integrated circuit fabrication process summarizes prior art in this field. In addition, a fast and physics-based inductor model is exploited to put the results contributed by many different groups in various technologies and achieved over the past eight years into perspective. Inductors are compared not only by their maximum quality factors (Q/sub max/), but also by taking the frequency at Q/sub max/, the inductance value (L), the self-resonance frequency (f/sub SR/), and the coil area into account. It is further explained that the spiral coil structure on a lossy silicon substrate can operate in three different modes, depending at first order on the silicon doping concentration. Ranging from high to low substrate resistivity, inductor-mode, resonator-mode, and eddy-current regimes are defined by characteristic changes of Q/sub max/, L, and f/sub SR/. The advantages and disadvantages of patterned or blanket resistive ground shields between the inductor coil and substrate and the effect of a substrate contact on the inductor are also addressed in this paper. Exploring optimum inductor designs under various constraints leverages the speed of the model. Finally, in view of the continuously increasing operating frequencies in advancing to new generations of RF systems, the range of feasible inductance values for given quality factors are predicted on the basis of optimum technological features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.