Abstract

Many components of gas turbines, including the combustion liners, ducts, casings and sealing structures, comprise metallic sheets perforated with arrays of circular cooling holes. These parts are highly prone to fatigue failure due to the stresses induced by temperature variations during operation. Here, we demonstrate both experimentally and numerically that the fatigue life of these porous components can be greatly enhanced by carefully designing the pores’ shape. In particular, we show that while the fatigue life of a metallic sheet with a square array of conventional circular cooling holes is <100k cycles, by replacing the pores with novel orthogonal S-shaped holes the life of the structure increases up to more than one million cycles. This is because the S-shaped pores introduce a soft mode of deformation based on rotation of the domains between neighboring holes that significantly affect the stress distribution and crack propagation in the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.