Abstract

This work proposes a suite of numerical techniques to facilitate the design of structure-preserving integrators for nonlinear dynamics, with particular emphasis on many-body dynamics. The celebrated LaBudde-Greenspan integrator and various energy-momentum schemes adopt a difference quotient formula in their algorithmic force definitions, which suffers from numerical instability as the denominator gets close to zero. There is a need to develop structure-preserving integrators without invoking the quotient formula. In this work, the potential energy of a Hamiltonian system is split into two parts, and specially developed quadrature rules are applied separately to them. The resulting integrators can be regarded as classical ones perturbed with first- or second-order terms, and the energy split guarantees the dissipative nature in the numerical residual. In the meantime, the conservation of invariants is respected in the design. A complete analysis of the proposed integrators is given, with representative numerical examples provided to demonstrate their performance. They can be used either independently as energy-decaying and momentum-conserving schemes for nonlinear problems or as an alternate option with a conserving integrator, such as the LaBudde-Greenspan integrator, when the numerical instability in the difference quotient is detected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call