Abstract

Non-orthogonal space-time block (STB) code structures used to be optimised considering a maximum-likelihood detection, but depending on the modulation order and/or the antenna number, the prohibitive complexity of such a receiver makes it infeasible in practice. Suboptimal low-complexity receiver structures like linear detectors can be applied instead, yielding degradation of performance compared with the predictions. When a forward error correction (FEC) code is used upstream of the STB code, an iterative receiver consisting of a FEC decoder and an interference canceller (IC) co-operating according to the turbo equalisation principle, can achieve near-optimal performance. This study aims to define the construction of full-rate full-diversity linear dispersion codes with reduced peak-to-average power ratio (PAPR), taking into account the serial concatenation with a FEC at the transmitter and a minimum mean square error (MMSE) turbo equaliser at the receiver. Optimisation criteria are mutual information maximisation, symbol error rate minimisation at the MMSE–IC output, full-diversity thanks to the threaded algebraic space time concept and PAPR minimisation. Explicit constructions are given and the resulting code efficiency is analysed through comparison with equivalent perfect STB codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call