Abstract

Body Area Nano-NETworks (BANNETs) consist of integrated nano-machines, diffused in the human body for collecting diagnostic information and tuning medical treatments. Endowed with communication capabilities, such nano-metric devices can interact with each other and the external micro/macro world, thus enabling advanced health-care services (e.g., therapeutic, monitoring, sensing, and telemedicine tasks). Due to limited computational and communication capabilities of nano-devices, as well as their scarce energy availability, the design of powerful BANNET systems represents a very challenging research activity for upcoming years. Starting from the most significant and recent findings of the research community, this work provides a further step ahead by proposing a hierarchical network architecture, which integrates a BANNET and a macro-scale health-care monitoring system and two different energy-harvesting protocol stacks that regulate the communication among nano-devices during the execution of advanced nano-medical applications. The effectiveness of devised solutions and the comparison with the common flooding-based communication technique have been evaluated through computer simulations. Results highlight pros and cons of considered approaches and pave the way for future activities in the Internet of Nano-Things and nano-medical research fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.