Abstract

This article is focused on the design of a fuzzy logic–based control system to optimize a drug freeze-drying process. The goal of the system is to keep product temperature as close as possible to the threshold value of the formulation being processed, without trespassing it, in such a way that product quality is not jeopardized and the sublimation flux is maximized. The method involves the measurement of product temperature and a set of rules that have been obtained through process simulation with the goal to obtain a unique set of rules for products with very different characteristics. Input variables are the difference between the temperature of the product and the threshold value, the difference between the temperature of the heating fluid and that of the product, and the rate of change of product temperature. The output variables are the variation of the temperature of the heating fluid and the pressure in the drying chamber. The effect of the starting value of the input variables and of the control interval has been investigated, thus resulting in the optimal configuration of the control system. Experimental investigation carried out in a pilot-scale freeze-dryer has been carried out to validate the proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.