Abstract

In this study, we present the synthesis of a poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) based comb-like ionomer and the characterization of this ionomer. The ionomer consists of a PPO backbone and a partially fluorinated cationic sidechain. The comb-like ionomer showed high stability regarding ionic conductivity and ion exchange capacity in alkaline media. Besides this, a low swelling ratio for 4M methanol anodic fuel was found for the ionomer making it a suitable candidate for an application in the anodic catalyst layer in AEM-DMFCs. Evaluation of the methanol diffusion with a mass exchanger unit coupled to a mass spectrometer showed that the partially fluorinated sidechain lowers methanol diffusion compared to a non-fluorinated ionomer. Nevertheless, the comb-like ionomer was implemented in single cells as a catalyst binder and provided strong enhancement in single cell performance when the cell was run with KOH-free anodic fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.