Abstract

Although having high potential for broadband wireless access, wireless mesh networks are known to suffer from throughput and fairness problems, and are thus hard to scale to large size. To this end, hierarchical architectures provide a solution to this scalability problem. In this paper, we address the problem of design and optimization of a tiered wireless access network that exploits free space optical (FSO) communications. The lower tier consists of mesh routers that are clustered based on traffic demands and delay requirements. The cluster heads are equipped with wireless optical transceivers and form the upper tier FSO network. For topology design and optimization, we first present a plane sweeping and clustering (PSC) algorithm aiming to minimize the total number of clusters. PSC sweeps the network area and captures cluster members under delay and traffic load constraints. For the upper tier FSO network, we present an algebraic connectivity-based formulation for topology optimization. We then develop a greedy edge-appending (GEA) algorithm, as well as its distributed version, that iteratively inserts edges to maximize algebraic connectivity. The proposed algorithms are analyzed and evaluated via simulations, and are shown to be highly effective as compared to the performance bounds derived in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.