Abstract
PurposeThe purpose of this paper is to propose novel parallel computational techniques for the parallelization of explicit finite element generalized approximate inverse methods, based on Portable Operating System Interface for UniX (POSIX) threads, for multicore systems.Design/methodology/approachThe authors' main motive for the derivation of the new Parallel Generalized Approximate Inverse Finite Element Matrix algorithmic techniques is that they can be efficiently used in conjunction with explicit preconditioned conjugate gradient‐type schemes on multicore systems. The proposed parallelization technique of the Optimized Banded Generalized Approximate Inverse Finite Element Matrix (OBGAIFEM) algorithm is achieved based on the concept of the “fish bone” approach with the use of a thread pool pattern. Theoretical estimates on the computational complexity of the parallel generalized approximate inverse finite element matrix algorithmic techniques are also derived.FindingsApplication of the proposed method on a two‐dimensional boundary value problem is discussed and numerical results are given on a multicore system using POSIX threads. These results tend to become optimum and are favorably compared to corresponding results from multiprocessor systems, as presented in recent work by Gravvanis et al.Originality/valueThe proposed parallel explicit finite element generalized approximate inverse preconditioning, using approximate factorization and approximate inverse algorithms, is an efficient computational method that is valuable for computer scientists and for scientists and engineers in engineering computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.