Abstract

We consider the design and analysis of Data Center Network (DCN) architectures for interconnecting dual-port servers. Unlike existing works, we propose the concept of Normalized Switch Delay (NSD) to distinguish a server-to-server-direct hop and a server-to-server-via-switch hop, to unify the design of DCN architectures. We then consider a fundamental problem: maximizing the number of dual-port servers, given network diameter and switch port number; and give an upper bound on this maximum number. Two novel architectures are proposed: SWCube and SWKautz, based on the generalized hypercube and Kautz graph, respectively, which in most cases accommodate more servers than BCN [1], which was claimed to be the largest known architecture. Compared with three existing architectures, SWCube and SWKautz demonstrate various advantages. Analysis and simulations also show that SWCube and SWKautz have nice properties for DCNs, such as low diameter, good fault-tolerance, and capability of efficiently handling network congestion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.