Abstract

We analyze two branches of five-dimensional theories from a methodological point of view: Kaluza’s theory and the Klein-Fock-Rumer (KFR) 5-optics, aimed at a geometric description of electromagnetism and masses of elementary particles, respectively. These two theories have a number of problematic points such as the Planckian masses in Kaluza’s theory, or appearing of a configuration space in the KFR scheme. We propose a simple six-dimensional toy model of Kaluza-Klein type with compactification on a two-dimensional torus $$\mathbb{T}^2$$, which demonstrates a possible way to overcome these difficulties in quite a simple manner. The key features of our approach are: merging of the above two 5D theories into a unique 6D theory; using the signature (+-) of extra space allowing one to renormalize the mass spectrum; and a special kind of truncation of the full isometry group to the electromagnetic gauge group U(1). The latter feature allows a geometrical interpretation in terms of an effective 5D theory on a hypersurface $$\Sigma\subset\mathbb{T}^2$$ being a leaf of a linear foliation of the 2-torus. Possible consequences and open questions arising in such a scheme are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.