Abstract
Conical intersections constitute the conceptual bedrock of our working understanding of ultrafast, nonadiabatic processes within photochemistry (and photophysics). Accurate calculation of potential energy surfaces within the vicinity of conical intersections, however, still poses a serious challenge to many popular electronic structure methods. Multiple works have reported on the deficiency of methods like linear-response time-dependent density functional theory within the adiabatic approximation (AA LR-TDDFT) or algebraic diagrammatic construction to second-order [ADC(2)]-approaches often used in excited-state molecular dynamics simulations-to describe conical intersections between the ground and excited electronic states. In the present study, we focus our attention on conical intersections between excited electronic states and probe the ability of AA LR-TDDFT and ADC(2) to describe their topology and topography, using protonated formaldimine and pyrazine as two exemplar molecules. We also take the opportunity to revisit the performance of these methods in describing conical intersections involving the ground electronic state in protonated formaldimine-highlighting in particular how the intersection ring exhibited by AA LR-TDDFT can be perceived either as a (near-to-linear) seam of intersection or two interpenetrating cones, depending on the magnitude of molecular distortions within the branching space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.