Abstract

The spatial QRS-T angle (SA) has been identified as a marker for changes in the ventricular depolarization and repolarization sequence. The determination of the SA requires vectorcardiographic (VCG) data. However, VCG data is seldom recorded in monitoring applications. This is mainly due to the fact that the number and location of the electrodes required for recording the Frank VCG complicate the recording of VCG data in monitoring applications. Alternatively, reduced lead systems (RLS) allow for the derivation of the Frank VCG from a reduced number of electrocardiographic (ECG) leads. Derived Frank VCGs provide a practical means for the determination of the SA in monitoring applications. One widely studied RLS that is used in clinical practice is based upon Mason-Likar leads I, II, V2 and V5 (MLRL). The aim of this research was two-fold. First, to develop a linear ECG lead transformation matrix that allows for the derivation of the Frank VCG from the MLRL system. Second, to assess the accuracy of the MLRL derived SA (MSA). We used ECG data recorded from 545 subjects for the development of the linear ECG lead transformation matrix. The accuracy of the MSA was assessed by analyzing the differences between the MSA and the SA using the ECG data of 181 subjects. The differences between the MSA and the SA were quantified as systematic error (mean difference) and random error (span of Bland-Altman 95% limits of agreement). The systematic error between the MSA and the SA was found to be 9.38° [95% confidence interval: 7.03° to 11.74°]. The random error was quantified as 62.97° [95% confidence interval: 56.55° to 70.95°].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.