Abstract

The relaxation of a photon bath to thermal equilibrium via Compton scattering with electrons is described in the Kompaneets equation (1957). The equation is mostly known from studies of astrophysical plasmas, for its convergence to the Planck distribution and for possible corrections to that Planck law in the cosmic microwave background, most notably from the Sunyaev–Zeldovich effect. We revisit its derivation emphasizing its structure as a Kramers–Moyal diffusion approximation to the quantum Boltzmann equation or Master equation with stimulated emission. We do not assume that the Planck law is stationary in performing the continuum approximation but we emphasize the necessity of the flux or Møller factor to arrive at a continuity equation. On the other hand, the structure allows more general assumptions than originally envisioned by Kompaneets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.