Abstract
Runtime noise management systems can enforce power integrity without significantly increasing design margins. These systems typically respond to on-chip noise sensors to accurately capture voltage emergencies. Unfortunately, it remains an open problem in the literature how to optimally place a given number of noise sensors for best voltage emergency detection, or how to best set the threshold voltage for these sensors. In this paper, we formally define the problem of noise sensor placement along with a novel sensing quality metric to be maximized. We then put forward an efficient algorithm to solve it, which is proven to attain the best result in the class of polynomial complexity approximations. We further solve the problem to minimize the system failure rate subject to a given runtime performance loss (RPL) constraint. Experimental results on a set of industrial power grid designs show that, compared to a simple average-noise based heuristic and two state-of-the-art temperature sensor placement algorithms aimed at recovering the full map or capturing the hot spots at all times, the proposed method on average can reduce the miss rate of voltage emergency detections by 7.4x, 15x, and 6.2x, respectively. The trade-off between the system failure rate and the RPL is also presented. To the best of the authors' knowledge, this is the very first in-depth work on noise sensor deployment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.