Abstract

The dependence of interfacial contact resistance (ICR) on contact materials between cathode and interconnect is systematically studied under both isothermal oxidation and thermal cycling conditions. Three kinds of cathode current-collecting layer (CCCL) are used, (La,Sr) (Co,Fe)O3 (LSCF), LSCF+10%Ag, and Ag, and tested in a SUS430/CCCL/SUS430 sandwich structure to simulate the actual operation of the solid oxide fuel cells (SOFCs). Experimental results show that the ICR of LSCF+10%Ag exhibits the smallest value, in comparison with the specimens with LSCF and Ag paste, as well as the sample without a CCCL. For LSCF+10%Ag contact, the ICR increases from 0.0069 mΩ cm2 to 3.74 mΩ cm2 under an isothermal condition for 150 h, then increases from 3.74 mΩ cm2 to 10.79 mΩ cm2 after 15 thermal cycles. This work provides information for the understanding of possible mechanisms of performance degradation of SOFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call