Abstract
A set A is called universal sum-free if, for every finite 0–1 sequence χ = (e1, …, en), either(i) there exist i, j, where 1[les ]j<i[les ]n, such that ei = ej = 1 and i − j∈A, or(ii) there exists t∈N such that, for 1[les ]i[les ]n, we have t + i∈A if and only if ei = 1.It is proved that the density of each universal sum-free set is zero, which settles a problem of Cameron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.