Abstract
We study the regularity of the probability density function of the supremum of the solution to the linear stochastic heat equation. Using a general criterion for the smoothness of densities for locally nondegenerate random variables, we establish the smoothness of the joint density of the random vector whose components are the solution and the supremum of an increment in time of the solution over an interval (at a fixed spatial position), and the smoothness of the density of the supremum of the solution over a space-time rectangle that touches the $$t = 0$$ axis. Applying the properties of the divergence operator, we establish a Gaussian-type upper bound on these two densities respectively, which presents a close connection with the Holder-continuity properties of the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.