Abstract

This work investigates the delamination behaviour of polyvinyl butyral (PVB) laminated glass under quasi-static loading based on a cohesive zone model (CZM) with an isotropic bilinear traction - separation (T – δ) law. It presents a 2D model of a through-cracked tensile (TCT) test within an implicit finite element framework of the commercial software ANSYS. Test results from literature are used to calibrate the adhesion properties of the PVB-glass interface in a numerical cohesive zone approach. The previous TCT tests were performed at a loading rate of 6 mm/min and a temperature of approx. 22 °C. Three different PVB adhesion grades, i.e., BG R10 (low), BG R15 (medium) and BG R20 (high) are considered. Given the uncertainty in the identification of adhesion parameters, including interfacial fracture energy, cohesive strength and stiffness, a parametric analysis is conducted quantifying the influences of model parameters on the simulation results. The study allows for decoupling of individual parameters in the calibration. Then, interfacial fracture energies and cohesive strengths of the PVB-laminated glass are calibrated by matching the force – displacement curves of the numerical simulations with those from the TCT experiments. One representative case was chosen for each adhesion grade. We obtain interfacial fracture energies of 425 J/m2, 650 J/m2 and 1000 J/m2 for BG R10, BG R15 and BG R20 PVBs, respectively, while the corresponding cohesive strengths are 3 MPa, 5 MPa and 10 MPa, respectively. Moreover, based on numerical simulation results, the conversion of energy during the delamination process is extracted and discussed. The mixed-mode delamination mechanism is investigated by calculating the mode I and mode II energy release rates with respect to different PVB thicknesses and adhesion. The results show that the proportion of the mode I energy release rate is around 30%∼40% of the total energy release rate at the stable delamination stage and increases with PVB thickness. The presented study contributes to the adhesion properties of various types of PVB interlayers reported in open literatures and proposes a methodology for the unique identification of adhesion properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call