Abstract
We study the degree structure of the ω-c.e., n-c.e., and Π10 equivalence relations under the computable many-one reducibility. In particular, we investigate for each of these classes of degrees the most basic questions about the structure of the partial order. We prove the existence of the greatest element for the ω-c.e. and n-computably enumerable equivalence relations. We provide computable enumerations of the degrees of ω-c.e., n-c.e., and Π10 equivalence relations. We prove that for all the degree classes considered, upward density holds and downward density fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.