Abstract

Simple families of increasing trees can be constructed from simply generated tree families, if one considers for every tree of size n all its increasing labellings, i.e., labellings of the nodes by distinct integers of the set { 1 , … , n } in such a way that each sequence of labels along any branch starting at the root is increasing. Three such tree families are of particular interest: recursive trees, plane-oriented recursive trees and binary increasing trees. We study the quantity degree of node j in a random tree of size n and give closed formulae for the probability distribution and all factorial moments for those subclass of tree families, which can be constructed via a tree evolution process. Furthermore limiting distribution results of this parameter are given, which completely characterize the phase change behavior depending on the growth of j compared to n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.