Abstract

In this paper we study the non-degenerate and partially degenerate Boussinesq equations on a closed surface $ \Sigma $. When $ \Sigma $ has intrinsic curvature of finite Lipschitz norm, we prove the existence of global strong solutions to the Cauchy problem of the Boussinesq equations with full or partial dissipations. The issues of uniqueness and singular limits (vanishing viscosity/vanishing thermal diffusivity) are also addressed. In addition, we establish a breakdown criterion for the strong solutions for the case of zero viscosity and zero thermal diffusivity. These appear to be among the first results for Boussinesq systems on Riemannian manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.